5,867,144

7

second preferred embodiment of the present invention pro-
vides a more generalized mechanism for non-default drag
and drop operation.

The second preferred embodiment of the present inven-
tion enables the user to perform a conventional drag and
drop operation or, alternatively, a non-default drag
(enhanced) and drop operation. The second preferred
embodiment is applicable to any drag and drop operation
and is not limited to drag and drop operations that involve
text.

The second preferred embodiment of the present inven-
tion is especially well adapted for use in an object oriented
programming environment. Hence, in the second preferred
embodiment of the present invention described herein, the
code for the operating system 50 provides an object-oriented
programming environment. The target and source of the
drag and drop operation are implemented as “objects.” An
object is a combination of data members (i.e., attributes held
in data structures) and member functions that act upon the
data members. Those skilled in the art will appreciate,
however, that the second preferred embodiment of the
present invention need not be implemented in an object-
oriented programming environment.

FIG. 12 is a flowchart illustrating the steps that are
performed in a conventional drag and drop operation using
the primary button 12 of the mouse 10 (e.g., the left button
in this case). Initially, a user moves the mouse 10 (FIG. 1)
to move the cursor 16 (FIG. 2) on the video display 18 until
the cursor is positioned over a source-visual element 20 that
is associated with the source object. The user then clicks on
the source-visual element 20 by depressing button 12 of the
mouse 10 (step 126 in FIG. 12). While keeping the button 12
depressed, the user drags the source-visual element 20 (FIG.
2) across the video display 18 until the source-visual ele-
ment 20 is positioned over a target visual element 22 that is
associated with the target object (step 128 in FIG. 12). The
user then releases the left button 12 of the mouse 10 to cause
a drop in the source-visual element 20 onto the target-visual
element 22 (step 130 in FIG. 12). A default operation is
automatically performed (step 132), and the source-visual
element 20 is advised of the default operation (step 134).

The non-default or expanded drag and drop operation of
the second preferred embodiment of the present invention is
performed by executing the steps shown in the flowchart of
FIG. 13. The expanded drag and drop operation is initiated
by positioning the cursor 16 (FIG. 2) on the source-visual
element 20 and clicking the secondary button 14 (FIG. 1) of
the mouse 10 (step 152 in FIG. 13). The source-visual
element 20 in the target-visual element may take many
forms, including text, icons or graphic elements. The code
for the source object 46 (FIG. 3) is informed that the cursor
16 has been positioned over the source-visual element and is
also informed that the secondary button 14 (FIG. 1) of the
mouse 10 has been depressed by the messages that are sent
to it. Movement of the mouse 10 and depressing a mouse
button are events that are translated into messages by the
code for the operating system 50. These messages are placed
in a message queue for the executing application program.

Each application program run on the operating system has
a separate message queue. Each application program
retrieves messages from the message queue using a selection
of code known as the “message loop.” Once the application
program has retrieved a message from its message queue,
the application program determines which window proce-
dure should receive the message. A separate window pro-
cedure is provided for each window. The application pro-

10

15

25

30

40

45

50

55

60

65

8

gram may provide several windows, and thus, the
application program must determine which window is the
proper destination for the message when the message is
retrieved from the queue.

When the cursor 16 is positioned over the source-visual
element 20, a message is generated that specifies the position
of the cursor and the window which holds the source visual
element 20. This message provides a relative position of the
cursor 16 in (X,Y) coordinates relative to the upper left-hand
corner of the window. The window procedure associated
with the window that holds the source-visual element 20
receives this message and passes the message to the code for
the source object 46 (FIG. 3). When the secondary button 14
(FIG. 1) of the mouse 10 is depressed, the code for the
source object 46 receives a message informing of the
depression of the secondary button.

Once step 152 of FIG. 13 is performed, the source visual
element 20 (FIG. 2) is dragged by movement of the mouse
10 (FIG. 1) until the source-visual element is positioned over
the target visual element 22. As the drag begins, the code for
the source object 46 sends a message to the code for the
operating system 50. This message holds an identifier for the
source object associated with the source-visual element,
information about the source-visual element 20 and an
indication of the operations that may be performed on the
source object (step 154 in FIG. 13). The code the operating
system 50 is responsible for tracking the mouse movements
until the source-visual element 20 is dropped.

When the source-visual element 20 is positioned over the
target-visual element 22, the secondary button 14 of the
mouse 10 is released to drop the source visual element (step
156 in FIG. 13). The code for the operating system 50 (FIG.
3) for the list of valid operations from the source object for
code to the target object 48. A context menu 163, such as
shown in FIG. 14, is then displayed to show the possible
operations that a user may perform (step 158 in FIG. 13).
The operations listed on the context menu may include
operations such as “move,” “copy,” and “link.” Among the
operations shown in the context menu 163 is the default
operation, which is indicated in boldface (note that “move”
is boldfaced in FIG. 14). The operations listed in the context
menu 163 depend upon the nature of the target object and the
source object. The determination of what operations are
listed on the context menu 163 will be described in more
detail below. The user then may choose an operation for the
context menu 163 (step 160 in FIG. 13). The system
determines that the selection is chosen and determines the
identity of any such user-selected operation (step 161). The
selection option is then performed (step 162). The user may
also cancel the effect of the drag and drop operation so that
no operation is performed. For example, a canceled option
may be provided on the context menu 162 (FIG. 14) or the
user may cancel the operation by hitting the escape button or
clicking the mouse outside the menu.

In order to understand what occurs once the source-visual
element 20 (FIG. 2) is positioned over the target-visual
element 22 in the second preferred embodiment of the
present invention, it is helpful to review the steps performed
by the code for the target object 48 (FIG. 3).

FIG. 15 is a flowchart showing the steps performed by the
target object for a typical drag and drop sequence in the
second preferred embodiment of the present invention.
Before a target object may be a target for a drag and drop
operation, it must first register as a target (step 154). If an
object is not registered as a target object, a source object will
not be allowed to drop on the target object. Later, once the



